Laevisines A and B: Two New Sesquiterpene–Pyridine Alkaloids from *Maytenus laevis*

Sonia Piacente, Nunziatina De Tommasi, and Cosimo Pizza*

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, P.zza V. Emanuele 9, Penta di Fisciano (SA), Italy

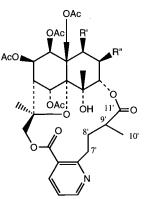
Received November 17, 1997

Two new sesquiterpene–pyridine alkaloids, laevisines A (1) and B (2), have been isolated from the bark of *Maytenus laevis*, along with seven known alkaloids (**3–9**). Their structures were elucidated by FABMS analysis and 1D and 2D NMR spectroscopy including DQF-COSY, HSQC, and HMBC.

Species belonging to the genus *Maytenus* (Celastraceae) are widely used in the Amazonian region as folk remedies against cancer, rheumatism, and skin ailments.^{1,2} Many characteristic and bioactive compounds, such as maytansinoids with antitumor activity,³ quinoid triterpenes with cytotoxic activity,^{4–6} and sesquiterpene polyesters⁷ and sesquiterpene pyridine alkaloids with insecticidal, insect antifeedant, and antitumor activities,^{8–10} have been reported from these species. Recently, immunosuppressive activity of sesquiterpene–pyridine alkaloids has also been reported.¹¹

During our studies on new potentially bioactive compounds from South American medicinal plants, we have investigated the CHCl₃:MeOH (9:1) extract of the bark of Maytenus laevis, known by the vernacular name of "chuchuasi". Gonzalez et al.² reported on the isolation of polyphenols and tingenone derivatives from the MeOH extract of M. laevis. We have undertaken a systematic investigation of the CHCl3:MeOH (9:1) extract of this species to verify the occurrence of other classes of metabolites, in particular sesquiterpene-pyridine alkaloids, which represent useful taxonomic markers. Our study led to the isolation of laevisines A (1) and B (2), which are new natural compounds, along with ebenifoline E-1 (3), euojaponine F (4), euojaponine I (5), euonine (6), euonymine (7), mayteine (8), and wilforine (9), which were isolated previously from other species belonging to the family Celastraceae.12-16

Laevisina A (1) had a molecular formula $C_{41}H_{51}NO_{18}$, as suggested by ¹³C, ¹³C DEPT NMR data, and the FABMS showed a quasi molecular anion at m/z 844. The ¹H NMR spectrum of **1** showed two methyl signals at δ 1.54 and 1.69, two sets of isolated oxymethylene protons at δ 4.52 and 5.24 (H₂-11), and at δ 3.70 and 5.95 (H₂-15), and six oxymethine protons at δ 4.75, 5.21, 5.32, 5.54, 5.71, and 7.02. On the basis of a DQF-COSY experiment, signals at δ 5.71, 5.21, and 4.75 were assigned to H-1, H-2, and H-3, while signals at δ 7.02, 2.33, 5.54, and 5.32 were attributed to H-5, H-6, H-7, and H-8 of an euonyminol sesquiterpene skeleton.¹² Also evident in the ¹H NMR spectrum were five acetyl singlets at δ 1.82, 2.13, 2.15, 2.22, and 2.32 and signals at δ 1.70 (3H, s), 1.73 (3H, d, J = 8.5 Hz), and 6.62 (1H, q, J = 8.5 Hz), which were correlated by a HSQC experiment to the corresponding carbon signals at δ 11.7, 14.2, and 137.5. On the basis of the HMBC correlations observed between the carbon signal at δ 165.7 and the proton signal at δ 6.62, and between the carbon signal at δ 128.0 and the proton signals at δ 1.70 and 1.73, the


* To whom correspondence should be addressed. Phone: ++ 39 89 968954. Fax: ++ 39 89 968937.

R"

LAEVISINE A (1) EBENIFOLINE E-I (3)	OCOC(CH ₃)=CHCH ₃ OBz	OAc OH
EUOJAPONINE I (5)	ONic	OAc
EUONYMINE (7)	OAc	OAc
MAYTEINE (8)	OBz	OAc

R'

	R'	R "
LAEVISINE B (2)	ONic	OAc
EUOJAPONINE F (4)	OBz	OAc
EUONINE (6)	OAc	OAc
WILFORINE (9)	OAc	OBz

presence of a 2-methylbut-2-enoyl moiety was deduced.¹⁰ The dibasic acid moiety of **1** was determined to be evoninic acid¹² on the basis of two secondary methyl proton signals

10.1021/np970518p CCC: \$18.00 © 1999 American Chemical Society and American Society of Pharmacognosy Published on Web 12/23/1998 at δ 1.21 (d, J = 7.0 Hz, Me-10') and 1.38 (d, J = 7.0 Hz, Me-9') and three aromatic proton signals at δ 7.27 (dd, J = 4.9 and 8.0 Hz), 8.08 (dd, J = 1.8 and 8.0 Hz), and 8.68 (dd, J = 1.8 and 4.9 Hz). The location of the acyl groups was deduced unambiguously from the HMBC experiment which showed three-bonded long-range correlations between carbonyl carbons and oxymethine protons and two-bonded long-range correlations of the same carbonyl carbons with the acyl protons. Long-range correlation between the carbonyl carbon signal at δ 165.7 and the proton signal at δ 5.71 (H-1) suggested the 2-methyl-but-2-enoyl moiety to be located at C-1. The HMBC experiment allowed the five acyl groups to be placed at C-2, C-5, C-7, C-8, and C-11 and their ¹H and ¹³C chemical shifts to be assigned as reported in Table 1.

Laevisine B (2) had a molecular formula $C_{42}H_{48}N_2O_{18}$, as indicated by ¹³C, ¹³C DEPT NMR, and FABMS showed a quasi molecular anion at m/z 867. NMR analysis again suggested the occurrence of euonyminol as the dihydro- β agarofuran sesquiterpene core. The nicotinate unit in the macrocycle was wilfordic acid,¹² as suggested by one secondary methyl signal at δ 1.22 (d, J = 7.1 Hz, Me-10'), one methine proton at δ 2.41 (m, H-9'), and two sets of methylenes at δ 1.98 and 2.30 (each m, H₂-8') and at δ 2.95 (ddd, J = 5.6, 6.6, and 13.0 Hz, H-7'a) and 4.00 (ddd, J =6.0, 9.9, and 13.0 Hz, H-7'b). Both ¹H and ¹³C NMR spectra showed strong similarities to those of euonine (6); 12 comparative analysis indicated that one of the acetyl group in 6 was replaced by a nicotinoyl moiety, as indicated by the signals at δ 7.37 (dd, J = 4.6 and 8.0 Hz, H-5"), 8.14 (ddd, J = 1.5, 1.5, and 8.0 Hz, H-4"), 8.76 (dd, J = 1.5 and 4.6 Hz, H-6"), and 9.00 (d, J = 1.5 Hz, H-2") in the ¹H NMR spectrum and at δ 123.3, 125.1, 137.0, 150.1, and 164.0 in the ¹³C NMR spectrum.

The nicotinoyl moiety was located at C-1 on the basis of the long-range correlation observed in the HMBC spectrum between the carbon signal at δ 164.0 and the proton signal at δ 5.98 (H-1). In good agreement with this finding was the diamagnetic shift observed for the methyl group of the acetate at C-8 (δ 1.50); in fact, as previously described for several polyhydroxy agarofuran derivatives, the unusual diamagnetic effect arises when an equatorial acetate on C-8 is shielded by an aromatic ester on C-1.¹² DQF-COSY, HSQC, and HMBC led to the assignments of ¹H and ¹³C NMR data as reported in Table 1.

Laevisine B (2) is closely related to wilfornine, characterized by the occurrence of a nicotinoyl moiety at C-2 and an acetyl group at C-1; wilfornine was found to exert immunosuppressive activity in mice.¹¹

Compounds 3-9 were identified on the basis of their NMR data in comparison with data from the literature.¹²⁻¹⁶

Experimental Section

General Experimental Procedures. A Bruker DRX-600 spectrometer operating at 599.19 MHz for ¹H and 150.86 for ¹³C using the UXNMR software package was used for NMR measurements in CDCl₃ solutions. 2D experiments: ¹H-¹H DQF-COSY,17 inverse detected 1H-13C HSQC,18 and HMBC19were obtained using UX-NMR software. Melting points were determined using a Bausch & Lomb apparatus. Optical rotations were measured on a Perkin-Elmer 141 polarimeter using a sodium lamp operating at 589 nm in 1% w/v solutions in MeOH. Fast atomic bombardment mass spectra (FABMS) were recorded in a glycerol matrix in the negative ion mode on a VG ZAB instrument (Xe atoms of energy of 2-6 kV). UV measurements were performed on a Perkin-Elmer Lambda 7 spectrophotometer. HPLC separations were performed with a Waters model 6000A pump equipped with a U6K injector and a model 401 refractive index detector.

Notes

Table 1. ¹H and ¹³C NMR Data of Laevisines A (1) and B (2)^a

	1		2		
position	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$	
1	5.71, d (4.2)	72.5	5.98, d (4.0)	74.0	
2	5.21, dd (2.2, 4.2)	68.9	5.25, dd (2.5, 4.0)	69.4	
3	4.75, d (2.2)	74.3	5.00, d (2.5)	75.5	
4	4.48 (OH)	71.2	4.42 (OH)	71.3	
5	7.02, br s	73.6	6.91, br s	73.4	
6	2.33, d (4.2)	50.2	2.36, d (4.2)	50.9	
7	5.54, dd (4.2, 5.9)	68.6	5.52, dd (4.2, 5.9)	68.8	
8	5.32, d (5.9)	69.0	5.42, d (5.9)	71.3	
9		52.3		52.3	
10		94.1		93.9	
11	4.52, d (13.0)	59.8	4.61, d (13.0)	59.9	
	5.24, d (13.0)		5.41, d (13.0)		
12	1.54, s	22.5	1.58, s	22.6	
13		84.1		84.7	
14	1.69, s	18.2	1.68, s	17.8	
15	3.70, d (11.5)	69.6	3.78, d (11.6)	70.1	
	5.95, d (11.5)		5.76, d (11.6)		
2′		165.4		164.0	
3′		124.7		124.9	
4'	8.08, dd (1.8, 8.0)	137.3	8.33, dd (1.6, 8.0)	138.5	
5'	7.27, dd (4.9, 8.0)	121.0	7.28, dd (4.9, 8.0)	121.3	
6′	8.68, dd (1.8, 4.9)	151.3	8.76, dd (1.6, 4.9)	153.7	
7'	4.66, q (7.0)	36.2	2.95, ddd (5.6, 6.6, 13.0)	33.2	
			4.00, ddd (6.0, 9.9, 13.0)		
8'	2.55, q (7.0)	44.6	1.98, m	33.0	
			2.30, m		
9′	1.38, d (7.0)	11.7	2.41, m	38.2	
10'	1.21, d (7.0)	9.5	1.22, d (7.1)	18.7	
11'		174.0		175.0	
12′		168.5		166.9	
Mebu (1)					
1		165.7			
2	0.00 (0.5)	128.0			
3	6.62, q (8.5)	137.5			
4	1.73, d (8.5)	14.2			
5 NH- (1)	1.70, s	11.7			
Nic (1)				104.0	
C=0 2			0.00 d(1.5)	164.0	
3			9.00, d (1.5)	150.1	
3			9 14 ddd (1 5 1 5 9 0)	125.1	
5			8.14, ddd (1.5, 1.5, 8.0) 7.37, dd (4.6, 8.0)	137.0	
6			8.76, dd (1.5, 4.6)	$123.3 \\ 153.7$	
o Ac (2)			8.70, uu (1.3, 4.0)	155.7	
C=0		168.3		168.5	
Me	2.15	20.8	2.15	20.8	
Ac (5)	2.15	20.0	2.15	20.0	
C=0		169.9		169.9	
Me	2.22	21.4	2.20	21.5	
Ac (7)		~1.1		~1.0	
<i>C</i> =0		170.0		169.9	
Me	2.13	20.8	2.13	21.1	
Ac (8)	. = =				
C=0		168.7		168.9	
Me	1.82	20.0	1.50	19.8	
Ac (11)					
<i>C</i> =0		170.3		170.1	
Me	2.32	21.4	2.32	21.2	
-	-				

 $^{a}\operatorname{Assignments}$ confirmed by DQF-COSY, HSQC, and HMBC experiments.

Plant Material. *Maytenus laevis* was collected in the Pastaza Region, Ecuador, in July 1995. A voucher sample of the plant (DF 001024) is deposited at the herbarium of Dipartimento di Scienze Farmaceutiche, University of Salerno.

Extraction and Isolation. The air-dried bark (550 g) was defatted with petroleum ether and CHCl₃ and then extracted with CHCl₃–MeOH (9:1) to give 8 g of residue. Part of the CHCl₃–MeOH (9:1) extract (3.5 g) was chromatographed on a silica gel column using CHCl₃ and increasing amounts of MeOH (up to 20%).

After monitoring on TLC [Si gel plates, CHCl₃–MeOH (19: 1)] the fractions were combined to give A (650 mg), B (250 mg), and C (95 mg) containing crude alkaloid mixtures. Fractions A–C were submitted to HPLC on a μ -Bondapak C-18 column (30 cm \times 7.8 mm i.d., flow rate 2.0 mL/min) using MeOH:H₂O

in the ratio 3:2 for A and 13:7 for B and C (isocratic conditions). Pure **1** (8 mg, $t_{\rm R} = 60$ min), **7** (52 mg, $t_{\rm R} = 30$ min), and **8** (62 mg, $t_{\rm R} = 80$ min) were obtained from A; **3** (8 mg, $t_{\rm R} = 22$ min), **4** (7.3 mg, $t_{\rm R} = 18$ min), **5** (28.5 mg, $t_{\rm R} = 14$ min), **6** (38 mg, $t_{\rm R} = 9$ min), and **9** (8 mg, $t_{\rm R} = 38$ min) were obtained from B; and **2** (6.5 mg, $t_{\rm R} = 18$ min) was obtained from C.

Laevisine A (1): white amorphous solid; mp 171–173 °C; $[\alpha]_{D}^{25} = +97.3$, (*c* 0.1, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 223 (3.61) and 2.65 (3.24) nm; ¹H and ¹³C NMR (CDCl₃, 600 MHz), Table 1; FABMS *m*/*z* 844 [M – H]⁻.

Laevisine B (2): white amorphous solid; mp 148–150 °C; $[\alpha]_{D}^{25} = +31.2$, (*c* 0.1, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 220 (4.20) and 2.62 (3.74) nm; ¹H and ¹³C NMR (CDCl₃, 600 MHz), Table 1; FABMS *m*/*z* 867 [M – H]⁻.

References and Notes

- Flores, F. A. *Advances in Economic Botany*, The New York Botanical Garden: New York, 1984; Vol. 1, pp 1–8.
 Gonzalez, J. G.; Delle Monache, G.; Delle Monache, F.; Marini-Bettolo,
- (2) Gonzalez, J. G.; Delle Monache, G.; Delle Monache, F.; Marini-Bettolo, G. B. *J. Ethnopharmacol.* 1982, 5, 73–75.
- (3) Kupchan, S. M.; Komoda, Y.; Court, W. A.; Thomas, J. G.; Smith, R. M.; Karim, A.; Gilmore, C. J.; Haltiwanger R. C.; Bryan, R. F. *J. Am. Chem. Soc.* **1972**, *94*, 1354–1356.
- (4) Itowaka, H.; Shirota, O.; Morita, H.; Takeya, K.; Tomioka, N.; Itai, A. Tetrahedron Lett. 1990, 31, 6881–6882.
- (5) Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H. *Tetrahedron* 1995, 51, 1107–1120.

- (6) Shirota, O.; Tamemura, T.; Morita, H.; Takeya, K.; Itokawa, H. J. Nat. Prod. 1996, 58, 1072–1075.
- (7) Itokawa, H.; Shirota, O.; Morita, H.; Takeya, K. J. Nat. Prod. 1994, 57, 460–470.
- (8) Kuo, Y. H.; Chen, C. H.; Kuo, L. M. Y.; King, M. L.; Wu, T. S.; Haruna, M.; Lee, K. H. J. Nat. Prod. 1990, 53, 422–428.
- (9) Kuo, H. K.; Chen, C. H.; King, M. L., Wu, T. S.; Lee, K. H. Phytochemistry 1994, 35, 803–807.
- (10) Kuo, Y. H.; King, M. L.; Chen, C. F.; Chen, H. Y.; Chen, C. H.; Chen, K.; Lee, K. H. J. Nat. Prod. 1994, 57, 263–269.
- (11) Deng, F.; Cao, J.; Xia, Z.; Lin, S.; Wang, X. Chem. Abstr. 1988, 108, 87738s.
- (12) Itowaka, H.; Shirota, O.; Morita, H.; Takeya, K.; Iitaka, Y. J. Chem. Soc., Perkin Trans. 1 1993, 1247–1254.
- (13) Itowaka, H.; Shirota, O.; Morita, H.; Takeya, K. *Heterocycles* 1992, 34, 885-889.
- (14) Han, B. H.; Ryu, J. H.; Han, J. N.; Park, M. H.; Park, J. H.; Naoki, H. J. Nat. Prod. 1990, 53, 909–914.
- (15) Klass, J.; Tinto, W. F.; Reynolds, W. F.; McLean, S. J. Nat. Prod. 1993, 56, 946-48.
- (16) Han, B. H.; Park, M. K.; Ryu, J. H.; Park, J. H.; Naoki, H. Phytochemistry 1990, 29, 2303–2307.
- (17) Bodenhausen, G.; Freeman, R.; Morrois, G. A.; Neidermyer, R.; Turner, J. J. Magn. Reson. 1977, 25, 559–565.
- (18) Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185-186.
- (19) Martin, G. E.; Crouch, R. C. J. Nat. Prod. 1991, 54, 1-70.

NP970518P